123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- import pandas as pd
- from common.log_utils import logFactory
- from common.database_utils import database_util
- from common import constant
- import pickle
- import numpy as np
- import matplotlib.pyplot as plt
- import seaborn as sns
- click_client = database_util.get_client()
- logger = logFactory("data analysis").log
- if __name__:
- total_pos = pd.read_pickle("data_pos_2013.pkl")
- total_neg = pd.read_pickle("data_neg_2013.pkl")
- total_pos['mark'] = 0
- total_neg['mark'] = 1
- total_train_data = pd.concat([total_pos, total_neg], axis=0)
- t0 = total_train_data[['EVENT_CONSUM_V', 'mark']]
- t0 = t0[t0.EVENT_CONSUM_V <= 100]
- all_data = pd.melt(t0, id_vars='mark', var_name="Features",
- value_name="Values")
- sns.violinplot(
- x="Features",
- y="Values",
- hue="mark",
- data=all_data,
- split=False,
- palette='muted'
- )
- plt.show()
- t1 = total_train_data[['EVENT_VIDEO_FLUX_V', 'mark']]
- t1 = t1[t1.EVENT_VIDEO_FLUX_V <= 50]
- all_data = pd.melt(t1, id_vars='mark', var_name="Features",
- value_name="Values")
- sns.violinplot(
- x="Features",
- y="Values",
- hue="mark",
- data=all_data,
- split=False,
- palette='muted'
- )
- plt.show()
|